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Abstract
Starting from the tri-Hamiltonian formulation of the Lagrange top (LT) in a
six-dimensional phase space, we discuss the possible reductions of the Poisson
tensors, the vector field and its Hamiltonian functions on a four-dimensional
space. We show that the vector field of the LT possesses, on the reduced phase
space, a quasi-bi-Hamiltonian formulation, which provides a set of separation
variables for the corresponding Hamilton–Jacobi equation.

PACS numbers: 02.30.Ik, 02.40.Vh, 45.20.Jj

Mathematics Subject Classification: 37K10, 37J35, 53D17, 70E40, 70H06

1. Introduction

The classical theory of separation of variables for the Hamilton–Jacobi equation provides
the most effective tool for solving the equations of motion of a given Hamiltonian system.
In this framework, the main problem is finding an efficient (possibly algorithmic) way to
produce a set of separation variables. To this end, two new approaches, stemming from
soliton theory, have been recently introduced: the ‘magic Sklyanin recipe’ [1], based on the
Lax representation of the equations of the motion, and the bi-Hamiltonian (bH) approach
to separation of variables [2–5], based on the bH structures associated with the equations
of motion. A remarkable feature of the latter approach is that if the Hamiltonian system
admits a quasi-bi-Hamiltonian (qbH) formulation, then a set of separation variables can be
algorithmically computed [3]; moreover, the qbH property is independent of the coordinate
system in which the bH structure is written down.

The aim of this paper is to apply the approach based on the qbH property to the classical
Lagrange top (LT); in particular, we show how the (complex) separation variables for LT,
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introduced in [6] in an algebraic–geometric setting, arise quite naturally as distinguished
functions for its tri-Hamiltonian structure.

The starting point of our analysis is the fact that, on a six-dimensional phase space M ,
the LT vector field XL admits a tri-Hamiltonian formulation XL = Pα dhα (throughout the
paper, the index α takes values 0, 1, 2), each one of the three compatible Poisson tensors Pα

possessing two independent Casimir functions.
When one tries to eliminate the Casimir functions by fixing their values, one is faced with

a typical situation, occurring also for other bH finite-dimensional integrable systems [5, 7, 8]:
to each one of the symplectic leaves Sα , one can restrict only the vector field XL and
the corresponding pair (Pα, hα), but not the entire triple of the Poisson tensors, so the
tri-Hamiltonian formulation of XL is lost under restriction. Nevertheless, using a more general
reduction process à la Marsden–Ratiu, we will show that the symplectic leaf S0 of the Poisson
tensor P0 can be endowed with a Poisson–Nijenhuis structure [9, 10] (hence a bH structure)
and that XL can be given a qbH formulation. So, the separability of LT is obtained from its
Hamiltonian structures as a natural outcome of the reduction process.

The paper is organized as follows. In section 2 the tri-Hamiltonian structure of LT is
briefly reviewed; in section 3 the main properties of the qbH model are discussed with a view
to application to the LT. In sections 4 and 5, respectively, the reduction of the Poisson tensors Pα

and of the vector field XL with its Hamiltonian functions are considered; the qbH formulation
for XL is explicitly constructed, together with a solution of the corresponding Hamilton–Jacobi
equation. Our results are summarized in section 6, where some potential extensions of this
work are pointed out.

2. The multi-Hamiltonian structure of the Lagrange top

A modern formulation of LT can be found in [11, 12]; as usual in this framework, the
components of vectors and covectors and the entries of matrices are referred to the comoving
frame, whose axes are the principal inertia axes of the top, with fixed point O.

The phase space M of LT is parametrized by the pair m = (ω, γ ), where ω = (ω1, ω2, ω3)
T

and γ = (γ1, γ2, γ3)
T are the angular velocity and the vertical unit vector, respectively. The

following notation is introduced: µ is the mass of the top, g the acceleration of gravity,
J = diag(A, A, cA) the principal inertia matrix (c �= 1), G = (0, 0, a)T is the centre of mass;
finally, normalizations are chosen such that µag/A = 1.

The Euler–Poisson equations are dLO/dt = MO (change of the angular momentum) and
dγ /dt = 0 (invariance of the vertical unit vector); with the above notation and normalizations,
these equations take the well-known form

dm

dt
= XL(m) XL(m) =




(1 − c)ω2ω3 − γ2

−(1 − c)ω3ω1 + γ1

0
γ2ω3 − γ3ω2

γ3ω1 − γ1ω3

γ1ω2 − γ2ω1


 . (2.1)

The LT vector field XL can be given a tri-Hamiltonian formulation

XL = P0 dh0 = P1 dh1 = P2 dh2. (2.2)

The compatible Poisson tensors Pα , written in block-matrix form, are

P0 =
(

0 B

B C

)
P1 =

(−B 0
0 �

)
P2 =

(
T R

−RT 0

)
(2.3)
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where B, C, �, T and R are 3 × 3 matrices:

B =
( 0 −1 0

1 0 0
0 0 0

)
C =

( 0 cω3 −ω2

−cω3 0 ω1

ω2 −ω1 0

)

� =
( 0 γ3 −γ2

−γ3 0 γ1

γ2 −γ1 0

)

T =
( 0 −cω3 ω2/c

cω3 0 −ω1/c

−ω2/c ω1/c 0

)
R =

( 0 −γ3 γ2

γ3 0 −γ1

−γ2/c γ1/c 0

)
.

(2.4)

The Hamiltonian functions hα can be written as

h0 = 1
2 F4 + 2σcF1F3 h1 = σc2F 3

1 − F3 − 2σcF1F2

h2 = F2
(2.5)

where σ = (c − 1)/2c and

F1 = ω3 F2 = 1
2 (ω2

1 + ω2
2 + cω2

3) − γ3

F3 = ω1γ1 + ω2γ2 + cω3γ3 F4 = γ 2
1 + γ 2

2 + γ 2
3 .

(2.6)

As is known, the functions Fi (i = 1, . . . , 4) are integrals of motion for equation (2.1); they are
independent and in involution w.r.t. each one of the three Poisson tensors. Moreover, (F1, F2)

are Casimir functions of P0, (F1, F4) of P1 and (F3, F4) of P2.
The vector field XL can be immersed in two different bH chains, starting and ending with

the Casimir functions of the Poisson tensors Pα:

P0 dF2 = 0 P2 dF2 = P0 dh0 = XL

P2 dh0 = P0 d(−σF 2
3 ) P2 d(−σF 2

3 ) = 0;
P0 dF2 = 0 P1 dF2 = P0 dh1 P1 dh1 = P0 dh0 = XL

P1 dh0 = P0 d(−σcF1F4) P1 d(−σcF1F4) = 0.

(2.7)

Remark 2.1. The Hamiltonian formulation of LT w.r.t. P2 is classical (see, e.g., [12]). The
bH formulation w.r.t. (P0, P2) was introduced in [13] in the semidirect product so(3) × so(3),
and was later recovered in [6] in an algebraic–geometric setting. The tri-Hamiltonian
formulation w.r.t. (P0, P1, P2) was constructed in [14], by a suitable reduction of the Lie–
Poisson pencil defined in the direct sum of three copies of so(3). (To compare the above-
quoted results, let us recall that the angular momentum and the vertical unit vector are taken
as dynamical variables in [12–14], whereas the angular momentum is replaced by the angular
velocity ω in [6] and in the present paper.)

3. The quasi-bi-Hamiltonian model

The qbH model was introduced in [2,15] and developed in [3,16] (see also [4] and references
therein). Here we summarize some facts to be used in the rest of the paper.

Let Q0, Q1 be two compatible Poisson tensors on a manifold M; a vector field X is said
to admit a qbH formulation w.r.t. Q0 and Q1 if there are three functions ρ, H , K such that

X = Q0 dH = 1

ρ
Q1 dK. (3.1)

In other words, X is Hamiltonian w.r.t. Q0 with Hamiltonian function H , and it is quasi-
Hamiltonian (qH) w.r.t. Q1, with qH function K and conformal factor 1/ρ. In spite of the
presence of ρ, equation (3.1) implies that H and K are in involution w.r.t. both Poisson brackets
corresponding to Q0 and Q1 (as well as in the particular bH case ρ = 1).



1744 C Morosi and G Tondo

If dim M = 2n, the qbH formulation is said to be of maximal rank if at each point
m ∈ M the Poisson tensors Q0, Q1 are non-degenerate and the associated tensor N = Q1Q

−1
0

(with vanishing Nijenhuis torsion) has n independent eigenvalues λ1(m), . . . , λn(m). In this
case, one can introduce a local chart (λi, µi) (i = 1, 2, . . . , n), called a Darboux–Nijenhuis
chart [17], such that Q0, Q1 and N take the canonical form

Q0 =
(

0 In

−In 0

)
Q1 =

(
0 )

−) 0

)
N =

(
) 0
0 )

)
(3.2)

with ) = diag(λ1, . . . , λn); in general, the coordinate functions µi , canonically conjugate to
λi , can be computed by quadratures. Finally, the qbH formulation is said to be of Pfaffian type
if ρ = ∏n

i=1 λi .
The following result has been proved in [3] for a Pfaffian qbH vector field.

Proposition 3.1. The general solution of equation (3.1) for the Pfaffian case is given by
functions H and K which, in a Darboux–Nijenhuis chart (λi, µi), take the ‘canonical’ form

H =
n∑

i=1

fi

+i

K =
n∑

i=1

ρ

λi

fi

+i

+i =
∏
j �=i

(λi − λj ) (3.3)

where each fi is an arbitrary function, depending at most on the pair (λi, µi). Moreover, the
Hamilton–Jacobi equations for both H and K are separable.

This proposition has a straightforward consequence.

Corollary 3.2. Let X = Q0 dH be a Hamiltonian vector field; if in a Q0-Darboux chart (x, y)

the Hamiltonian H takes the canonical form (3.3), then X admits a Pfaffian qbH formulation
w.r.t. a Poisson tensor Q1 and a qH function K of the form (3.2) and (3.3), respectively.

Vice versa, let X = (1/ρ)Q1 dK be a qH vector field w.r.t. Q1; if, in a chart (x, y), Q1

and K take the canonical forms (3.2), (3.3) and ρ = ∏n
i=1 xi , then also X = Q0 dH with

Q0 and H given by (3.2), (3.3), respectively. Hence, the chart (x, y) is a Darboux–Nijenhuis
chart for the Poisson pair Q0, Q1.

For n = 2, this corollary can be slightly generalized, in a way that is useful for subsequent
applications to LT.

Proposition 3.3. Let S be a four-dimensional manifold and Y = Q0 dH be a Hamiltonian
vector field w.r.t. a non-degenerate Poisson tensor Q0. Let there be a Darboux chart (x, y)

such that the Hamiltonian H can be written as a linear combination of two functions Ĥ , K̂

with the canonical form (3.3), i.e.,

H(x, y) = βĤ (x, y) + K̂(x, y) β = const

Ĥ (x, y) = 1

x1 − x2
(f̂1(x1, y1) − f̂2(x2, y2))

K̂(x, y) = 1

x1 − x2
(x2f̂1(x1, y1) − x1f̂2(x2, y2)).

(3.4)

Then, the vector field Y admits the Pfaffian qbH formulation (3.1)–(3.3); a Darboux–Nijenhuis
chart (λ, µ) is given by the following map:

1 : (x, y) �→ (λ, µ) λi = 1

xi + β
µi = −yi(xi + β)2 (i = 1, 2). (3.5)

Hence, H is separable in the chart (λ, µ). Moreover, H is separable also in the chart (x, y)

and the corresponding Hamilton–Jacobi equation

H(x1, x2, ∂W/∂x1, ∂W/∂x2) = h (3.6)
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has the complete solution W(x1, x2; ĥ, k̂) = W1(x1; ĥ, k̂) + W2(x2; ĥ, k̂), W1 and W2 fulfilling
the Sklyanin separation equations [1]

f̂1(x1, W ′
1(x1)) = x1ĥ − k̂ f̂2(x2, W ′

2(x2)) = x2ĥ − k̂ (3.7)

with βĥ + k̂ = h.

Proof. It is straightforward to check that the map 1 : (x, y) �→ (λ, µ) is a Darboux map
for Q0; moreover, since x1 − x2 = −(λ1 − λ2)/λ1λ2, the Hamiltonian H takes the canonical
form (3.3)

H(x(λ, µ), y(λ, µ)) = βĤ (x(λ, µ), y(λ, µ)) + K̂(x(λ, µ), y(λ, µ))

= 1

λ1 − λ2

(
−λ1f̂1

(
1

λ1
− β, −λ2

1µ1

)
+ λ2f̂2

(
1

λ2
− β, −λ2

2µ2

))

= 1

λ1 − λ2
(f1(λ1, µ1) − f2(λ2, µ2)) (3.8)

where

f1(λ1, µ1) = −λ1f̂1

(
1

λ1
− β, −λ2

1µ1

)
f2(λ2, µ2) = −λ2f̂2

(
1

λ2
− β, −λ2

2µ2

)
.

(3.9)

On account of corollary 3.2, the vector field Y = Q0 dH admits the qH formulation
Y = (1/ρ)Q1 dK and H is separable.

Obviously enough, H is separable also in the chart (x, y), since the map 1 is a separated
map [18], i.e., it maps separated coordinates into separated ones. Indeed, taking into account
the form (3.4) of the function H , it is easily checked that the Hamilton–Jacobi equation
H(x, ∂W/∂x) = h has a complete solution W(x1, x2; ĥ, k̂) = W1(x1; ĥ, k̂) + W2(x2; ĥ, k̂),
with βĥ + k̂ = h, and that W1, W2 fulfil the Sklyanin separation equations (3.7) for the
Hamilton–Jacobi equations Ĥ (x, ∂W/∂x) = ĥ, K̂(x, ∂W/∂x) = k̂. �

4. The reduction of the tri-Hamiltonian structure of the Lagrange top

If a vector field X on a manifold M is bH w.r.t. a pair of degenerate Poisson tensors (P0, P1), a
preliminary step in analysing its integrability is trying to reduce the vector field, its Hamiltonian
functions and the Poisson tensors on a lower-dimensional manifold M ′, where one of the two
Poisson tensors, say P0, is invertible. A natural way to do that is to fix the values of the Casimir
functions of P0. Of course, both P0 and X can be properly restricted to a symplectic leaf S0,
giving rise to a Poisson tensor P ′

0 and to a vector field X′ = P ′
0 dH ′, H ′ being the restriction to

S0 of the original Hamiltonian H . However, without additional assumptions, P1 is not certain
to restrict to S0, so X′ loses the original bH formulation.

This situation occurs also for the tri-Hamiltonian structure of the LT. Each one of the three
Poisson tensors Pα has two independent Casimir functions, and the generic symplectic leaves
Sα are four-dimensional submanifolds of M . On account of equation (2.6), they are defined as

S0 = {
m ∈ M|ω3 = a1/2c, ω2

1 + ω2
2 + cω2

3 − 2γ3 = 2a2
}

S1 = {
m ∈ M|ω3 = a1/2c, γ 2

1 + γ 2
2 + γ 2

3 = a4
}

S2 = {m ∈ M|ω1γ1 + ω2γ2 + cω3γ3 = − 1
2 a3, γ 2

1 + γ 2
2 + γ 2

3 = a4}
(4.1)

where a1, a2, a3 and a4 are arbitrary constants. Each Poisson tensor Pα can be properly
restricted to a corresponding symplectic leaf Sα , but the other two tensors do not restrict to the
same leaf.
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Nevertheless, a quite general reduction technique given by the Marsden–Ratiu
theorem [19] can be applied; it will enable us to construct on Sα a Poisson–Nijenhuis
structure [9, 10] induced by the tri-Hamiltonian structure on M , and on S0 a qbH formulation
for the vector field X′

L. Essentially, one considers a Poisson manifold (M, P ), a submanifold
S ↪→ M and a distribution D ⊂ T M|S such that E := D ∩ T S is a regular foliation with a
good quotient N = S/E. Then, the theorem states that the Poisson tensor P is reducible to
N if the following conditions hold:

(i) the functions on M which are invariant along D form a Poisson subalgebra of C∞(M);
(ii) P(D0) ⊂ T S + D (D0 being the annihilator of D in T ∗M).

Analogously to previous applications of this procedure to bH structures [5, 8, 20], let us
choose as the submanifold S a generic symplectic leaf Sα of the Poisson tensor Pα and a
distribution D such that at each point sα ∈ Sα the following decomposition holds:

Tsα
M = Tsα

Sβ ⊕ Dsα
(4.2)

where Sβ is the symplectic leaf of Pβ (β = 0, 1, 2) passing through sα .
This assumption ensures that (ii) is trivially fulfilled and that E = 0, so the reduction

procedure becomes a submersion 9 : M → Sα onto the manifold Sα; thus, it allows us to
endow Sα with a non-degenerate tri-Hamiltonian structure, since the kernels of the reduced
Poisson tensors P ′

β vanish. Indeed, if 9∗ denotes the (injective) pull-back of the submersion 9,
we have

Kersα
P ′

β = (9∗)−1(Imsα
9∗ ∩ P −1

β (Dsα
∩ Tsα

Sβ))
(4.2)= (9∗)−1(Imsα

9∗ ∩ Kersα
Pβ) = 0

(4.3)

where we have taken into account that

Imsα
9∗ ⊂ D0 D0 ∩ Kersα

Pβ = D0 ∩ (Imsα
Pβ)0 = D0 ∩ (Tsα

Sβ)0 (4.2)= 0. (4.4)

In the LT case, the distribution is as follows.

Lemma 4.1. Let D be the distribution given by the vector fields

Z1 = −ic
∂

∂ω2
+

∂

∂ω3
Z2 = i

∂

∂γ2
− ∂

∂γ3
(4.5)

(i = √−1). Moreover, let ϕ1, ϕ2 be two generic functions. Then, for each Poisson tensor Pα

there are two vector fields W1α and W2α (depending on ϕ1 and ϕ2) such that

Lϕ1Z1+ϕ2Z2(Pα) = Z1 ∧ W1α + Z2 ∧ W2α (4.6)

(LZ and ∧ denoting the Lie derivative along the flow of the vector field Z and the exterior
product of vector fields, respectively).

Proof. It is easy to check that LZj
Pα = Z1 ∧ Y1jα + Z2 ∧ Y2jα (j = 1, 2), with suitable vector

fields Y1jα, Y2jα . This result, together with the identity Lf X(P ) = f LX(P ) + X ∧ P df ,
implies (4.6), the vector fields Wjα being Wjα = ϕ1Yj1α + ϕ2Yj2α + Pα dϕj . �
Equation (4.6) implies the assumption (i), since if f and g are invariant functions along D

and Z ∈ D, then LϕZ{f, g} = 〈df, LϕZ(P ) dg〉 (4.6)= 0 for each function ϕ. Moreover,
condition (4.2) is generically satisfied, as can be easily verified. Hence, conditions (i), (ii) are
fulfilled and the Marsden–Ratiu reduction technique can be applied on each symplectic leaf
Sα . In conclusion, we have proved the following.

Proposition 4.2. The tri-Hamiltonian structure Pβ is reducible to a non-degenerate tri-
Hamiltonian structure P ′

β on each one of the symplectic leaves Sα .
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To express the reduced tensors in a particularly simple and useful form, it is convenient to adapt
the coordinates on M to the distribution D, introducing a parametrization including coordinate
functions which span the subalgebra of the functions invariant along D. Let us choose the
chart (u, v, w), related to (ω, γ ) by the map ? : M → M : (ω, γ ) �→ (u, v, w):

u1 = cω3 − iω2 u2 = iγ2 − γ3

v1 = ω1 v2 = −γ1 w1 = iω2 + cω3 w2 = −iγ2 − γ3.
(4.7)

Taking into account the tri-Hamiltonian structure Pα given by (2.3) and the definition (4.1)
of Sα , a straightforward (though lengthy) calculation allows one to verify that the chart (u, v)
gives a parametrization on each one of the symplectic leaves Sα; the reduced Poisson tensors
P ′

β and the tensor N take the form

P ′
0 = i




0 0 0 1
0 0 1 u1

0 −1 0 0
−1 −u1 0 0


 P ′

1 = i




0 0 1 0
0 0 0 −u2

−1 0 0 0
0 u2 0 0




P ′
2 = i




0 0 −u1 −u2

0 0 −u2 0
u1 u2 0 0
u2 0 0 0


 .

(4.8)

Remark 4.3. By a direct inspection, one easily concludes that the tensor N ′ := P ′
1P

′
0
−1 (with

vanishing Nijenhuis torsion) is such that P ′
1 = N ′P ′

0 and P ′
2 = N ′P ′

1.
The matrix representation of P ′

0 and of the adjoint tensor N ′∗ of N ′ are formed by
Hankel and Frobenius blocks, respectively, so (u, v) are Hankel–Frobenius coordinates, in
the terminology of [8].

Proposition 4.4. Let us consider the map ? : Sα → Sα : (u, v) �→ (x, y) :

x1 = 1
2

(
−u1 −

√
u2

1 − 4u2

)
x2 = 1

2

(
−u1 +

√
u2

1 − 4u2

)

y1 = 1
2

(
2v2 − u1v1 − v1

√
u2

1 − 4u2

)
y2 = 1

2

(
2v2 − u1v1 + v1

√
u2

1 − 4u2

)
.

(4.9)

The chart (x, y) is a Darboux–Nijenhuis chart for the tri-Hamiltonian structure on Sα; the
reduced Poisson tensors P ′

α have the block-matrix forms

P ′
0 = −i

(
0 I

−I 0

)
P ′

1 = −i

(
0 X

−X 0

)
P ′

2 = −i

(
0 X 2

−X 2 0

)
(4.10)

where X = diag(x1, x2).

Proof. A straightforward computation, taking into account equations (4.8) and (4.9). �

(To be more precise, in order to have the Darboux–Nijenhuis chart defined in section 3,
one should eliminate the factor (−i) in equation (4.10), via the map x �→ ix, y �→ y.)

5. The reduction of the vector field and the Hamiltonians of the Lagrange top

Having established the projection of the tri-Hamiltonian structure on each one of the symplectic
leaves Sα , the next step is to consider the reduction of the vector field XL and of the
corresponding Hamiltonian functions hα .
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Unfortunately, they do not project onto Sα , since XL does not preserve the distribution
D and the Hamiltonians hα are not invariant along D; hence, the tri-Hamiltonian formulation
of XL is lost on Sα . Nevertheless, each pair (XL, hα) can be restricted to the corresponding
symplectic leaf Sα , so that equation (2.1), restricted to Sα , keeps a Hamiltonian formulation.
Furthermore, if we consider the reduction on a symplectic leaf S0, we can recover, as a reminder
of the original tri-Hamiltonian formulation, a qbH formulation for XL; this suffices to provide
a set of separation variables. Indeed, the following holds.

Proposition 5.1. The vector field XL, restricted to S0, takes the form

XL = P ′
0 dH = −iQ0 dH. (5.1)

Its Hamiltonian H = h0|S0
takes the form

H(x, y) = σa1Ĥ (x, y) + K̂(x, y) (5.2)

where

Ĥ (x, y) = 1

x1 − x2
(f̂ (x1, y1) − f̂ (x2, y2))

K̂(x, y) = 1

x1 − x2
(x2f̂ (x1, y1) − x1f̂ (x2, y2))

f̂ (ξ, η) = −1

2
η2 +

1

2
ξ 4 +

1

2
a1ξ

3 +

(
a2 + σ

a2
1

4

)
ξ 2.

(5.3)

Proof. A straightforward computation. �

On account of this result, we are just in the situation considered in proposition 3.3, with

β = σa1 f̂1 = f̂2 = f̂ . (5.4)

So, XL admits a qbH formulation; the Darboux–Nijenhuis coordinates (λ, µ) are obtained
from (x, y) via the map (3.5):

λi = (xi + σa1)
−1 µi = −yi (xi + σa1)

2 (i = 1, 2). (5.5)

As follows from the general results of propositions 3.1, 3.3, H and K are separable both in
the Darboux–Nijenhuis chart (λ, µ) and in the chart (x, y). Using the latter, let us compute a
solution W of the Hamilton–Jacobi equations for H and K:

H

(
x1, x2,

∂W

∂x1
,

∂W

∂x2

)
= h K

(
x1, x2,

∂W

∂x1
,

∂W

∂x2

)
= k. (5.6)

Taking into account the expression (5.3) of f̂ and the fact that the qH function K given by (3.3)
turns out to be K = Ĥ , we have

W(x1, x2; h, k) =
∫ x1 √

g(ξ) dξ +
∫ x2 √

g(ξ) dξ

g(ξ) = ξ 4 + a1ξ
3 +

(
2a2 + σ

a4
1

2

)
ξ 2 − 2kξ + 2(h − σa1k).

(5.7)
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6. Concluding remarks

The first result in this paper is that, reducing à la Marsden–Ratiu the tri-Hamiltonian structure
(P0, P1, P2) of LT onto a generic symplectic leaf Sα of each Poisson tensor, a non-degenerate
Poisson–Nijenhuis structure is obtained. The reduction depends essentially on the distribution
D fulfilling (4.2) and (4.6); since D may be not unique, possibly different Poisson–Nijenhuis
structures can be constructed on the symplectic leaf. This point deserves further investigation.

The second step of the reduction procedure is the restriction of the LT vector field and
Hamiltonian functions to the invariant submanifold S0, discussed in section 5. This produces
a qbH formulation for the LT vector field and consequently, as a necessary outcome, a set of
separation variables. An open question is whether the restriction of the LT vector field to other
invariant submanifolds, such as the symplectic leaves S1 and S2 of the Poisson tensors P1 and
P2, gives rise to different sets of separation variables.

As a last remark, we observe that the tri-Hamiltonian structure of LT has a deformation
in the original phase space M (see, e.g., [14]). In fact, there is a vector field τ such that
Lτ (P2) = 2P1, Lτ (P1) = P0, Lτ (P0) = 0; in the chart (ω, γ ) chosen in this paper, τ is given
by τ = (0, 0, −2/c, ω1, ω2, cω3)

T. In contrast, a recursion operator N relating the Poisson
tensors does not exist in M . Under the submersion 9 : M → S0, the deformation process is
preserved since the vector field τ is projectable onto S0; hence, the previous relations hold for
(P ′

0, P ′
1, P ′

2) w.r.t. the projected vector field τ ′, given by τ ′ = −(2, u1, 0, v1, )T in the chart
(u, v). As observed in remark 4.3, on S0 there is also an invertible recursion operator N ′

such that P ′
1 = N ′P ′

0 and P ′
2 = N ′P ′

1 (consequently, one has a whole sequence of compatible
Poisson tensors P ′

j+1 = N ′P ′
j for each integer j ). One may wonder whether the recursion

scheme based on N ′ could be inferred from the existence of the deformation scheme on the
initial phase space, and under which conditions on the deformation vector field τ . To the
best of our knowledge, this question (which is not specific to the LT) has not yet received a
satisfactory answer; in our opinion, it deserves further investigation in the general framework
of the reduction theory for multi-Hamiltonian manifolds.
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